翻訳と辞書 |
Car–Parrinello method : ウィキペディア英語版 | Car–Parrinello method
The Car–Parrinello method is a type of molecular dynamics, usually employing periodic boundary conditions, planewave basis sets, and density functional theory, proposed by Roberto Car and Michele Parrinello in 1985, who were subsequently awarded the Dirac Medal by ICTP in 2009. In contrast to Born–Oppenheimer molecular dynamics wherein the nuclear (ions) degree of freedom are propagated using ionic forces which are calculated at each iteration by approximately solving the electronic problem with conventional matrix diagonalization methods, the Car–Parrinello method explicitly introduces the electronic degrees of freedom as (fictitious) dynamical variables, writing an extended Lagrangian for the system which leads to a system of coupled equations of motion for both ions and electrons. In this way an explicit electronic minimization at each time step, as done in Born-Oppenheimer MD, is not needed: after an initial standard electronic minimization, the fictitious dynamics of the electrons keeps them on the electronic ground state corresponding to each new ionic configuration visited along the dynamics, thus yielding accurate ionic forces. In order to maintain this adiabaticity condition, it is necessary that the fictitious mass of the electrons is chosen small enough to avoid a significant energy transfer from the ionic to the electronic degrees of freedom. This small fictitious mass in turn requires that the equations of motion are integrated using a smaller time step than the one (1–10 fs) commonly used in Born–Oppenheimer molecular dynamics. ==Fictitious dynamics==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Car–Parrinello method」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|